Fractional analogue of Sturm-Liouville operator
Documenta mathematica, Tome 21 (2016), pp. 1503-1514.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper we study a symmetric fractional differential operator of order $2\alpha$, $(1/2\alpha1)$. Using the extension theory a class of self-adjoint problems generated by the fractional Sturm-Liouville equation is described.
Classification : 26A33, 34L10
Keywords: self-adjoint operator, symmetric operator, fractional Sturm-Liouville operator, fractional differential equation, boundary value problem, boundary condition, Caputo operator, Riemann-Liouville operator
@article{DOCMA_2016__21__a5,
     author = {Tokmagambetov, Niyaz and Torebek, Berikbol T.},
     title = {Fractional analogue of {Sturm-Liouville} operator},
     journal = {Documenta mathematica},
     pages = {1503--1514},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a5/}
}
TY  - JOUR
AU  - Tokmagambetov, Niyaz
AU  - Torebek, Berikbol T.
TI  - Fractional analogue of Sturm-Liouville operator
JO  - Documenta mathematica
PY  - 2016
SP  - 1503
EP  - 1514
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a5/
LA  - en
ID  - DOCMA_2016__21__a5
ER  - 
%0 Journal Article
%A Tokmagambetov, Niyaz
%A Torebek, Berikbol T.
%T Fractional analogue of Sturm-Liouville operator
%J Documenta mathematica
%D 2016
%P 1503-1514
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a5/
%G en
%F DOCMA_2016__21__a5
Tokmagambetov, Niyaz; Torebek, Berikbol T. Fractional analogue of Sturm-Liouville operator. Documenta mathematica, Tome 21 (2016), pp. 1503-1514. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a5/