Milne's correcting factor and derived de Rham cohomology
Documenta mathematica, Tome 21 (2016), pp. 39-48.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Milne's correcting factor is a numerical invariant playing an important role in formulas for special values of zeta functions of varieties over finite fields. We show that Milne's factor is simply the Euler characteristic of the derived de Rham complex (relative to Z) modulo the Hodge filtration.
Classification : 14G10, 14F40, 11S40, 11G25
Keywords: zeta functions, special values, derived de Rham cohomology
@article{DOCMA_2016__21__a42,
     author = {Morin, Baptiste},
     title = {Milne's correcting factor and derived de {Rham} cohomology},
     journal = {Documenta mathematica},
     pages = {39--48},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a42/}
}
TY  - JOUR
AU  - Morin, Baptiste
TI  - Milne's correcting factor and derived de Rham cohomology
JO  - Documenta mathematica
PY  - 2016
SP  - 39
EP  - 48
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a42/
LA  - en
ID  - DOCMA_2016__21__a42
ER  - 
%0 Journal Article
%A Morin, Baptiste
%T Milne's correcting factor and derived de Rham cohomology
%J Documenta mathematica
%D 2016
%P 39-48
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a42/
%G en
%F DOCMA_2016__21__a42
Morin, Baptiste. Milne's correcting factor and derived de Rham cohomology. Documenta mathematica, Tome 21 (2016), pp. 39-48. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a42/