Systèmes inductifs cohérents de ${\mathcal D}$-modules arithmétiques logarithmiques, stabilité par opérations cohomologiques
Documenta mathematica, Tome 21 (2016), pp. 1515-1606.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let ${\mathcal V}$ be a complete discrete valuation ring of unequal characteristic with perfect residue field, ${\mathcal P}$ be a smooth, quasi-compact, separated formal scheme over ${\mathcal V}$, ${\mathcal Z}$ be a strict normal crossing divisor of ${\mathcal P}$ and ${\mathcal P}^\sharp:=({\mathcal P},{\mathcal Z})$ the induced smooth formal log-scheme over ${\mathcal V}$. \par In Berthelot's theory of arithmetic ${\mathcal D}$-modules, we work with the inductive system of sheaves of rings $\widehat{{\mathcal D}}^{(\bullet)}_{{\mathcal P}^\sharp}:=(\widehat{{\mathcal D}}^{(m)}_{{\mathcal P}^\sharp})_{m\in\mathbb{N}}$, where $\widehat{{\mathcal D}}^{(m)}_{{\mathcal P}^\sharp}$ is the $p$-adic completion of the ring of differential operators of level $m$ over ${\mathcal P}^\sharp$. Moreover, he introduced the sheaf ${\mathcal D}^\dag_{{\mathcal P}^\sharp,\mathbb{Q}}:= \varinjlim_m\,\widehat{{\mathcal D}}^{(m)}_{{\mathcal P}^\sharp}\otimes_{\mathbb{Z}}\mathbb{Q}$ of differential operators over ${\mathcal P}^\sharp$ of finite level. \par In this paper, we define the notion of (over)coherence for complexes of $\widehat{{\mathcal D}}^{\bullet}_{{\mathcal P}^\sharp}$-modules. In this inductive system context, we prove some classical properties including that of Berthelot-Kashiwara's theorem. Moreover, when ${\mathcal Z}$ is empty, we check this notion is compatible to that already know of (over)coherence for complexes of ${\mathcal D}^\dag_{{\mathcal P},\mathbb{Q}}$-modules.
Classification : 14F30, 14F10
Keywords: arithmetic \({\mathcal D}\)-modules, \(p\)-adic cohomology, de Rham cohomology
@article{DOCMA_2016__21__a4,
     author = {Caro, Daniel},
     title = {Syst\`emes inductifs coh\'erents de \({\mathcal {D}\)-modules} arithm\'etiques logarithmiques, stabilit\'e par op\'erations cohomologiques},
     journal = {Documenta mathematica},
     pages = {1515--1606},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a4/}
}
TY  - JOUR
AU  - Caro, Daniel
TI  - Systèmes inductifs cohérents de \({\mathcal D}\)-modules arithmétiques logarithmiques, stabilité par opérations cohomologiques
JO  - Documenta mathematica
PY  - 2016
SP  - 1515
EP  - 1606
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a4/
LA  - en
ID  - DOCMA_2016__21__a4
ER  - 
%0 Journal Article
%A Caro, Daniel
%T Systèmes inductifs cohérents de \({\mathcal D}\)-modules arithmétiques logarithmiques, stabilité par opérations cohomologiques
%J Documenta mathematica
%D 2016
%P 1515-1606
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a4/
%G en
%F DOCMA_2016__21__a4
Caro, Daniel. Systèmes inductifs cohérents de \({\mathcal D}\)-modules arithmétiques logarithmiques, stabilité par opérations cohomologiques. Documenta mathematica, Tome 21 (2016), pp. 1515-1606. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a4/