On $F$-crystalline representations
Documenta mathematica, Tome 21 (2016), pp. 223-270.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We extend the theory of Kisin modules and crystalline representations to allow more general coefficient fields and lifts of Frobenius. In particular, for a finite and totally ramified extension $F/\Q$_p, and an arbitrary finite extension $K/F$, we construct a general class of infinite and totally wildly ramified extensions $K_\infty/K$ so that the functor $V\mapsto V|_{G_{K_\infty}}$ is fully-faithfull on the category of $F$-crystalline representations $V$. We also establish a new classification of $F$-Barsotti-Tate groups via Kisin modules of height 1 which allows more general lifts of Frobenius.
Classification : 14F30, 14L05
Keywords: F-crystalline representations, kisin modules
@article{DOCMA_2016__21__a36,
     author = {Cais, Bryden and Liu, Tong},
     title = {On $F$-crystalline representations},
     journal = {Documenta mathematica},
     pages = {223--270},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a36/}
}
TY  - JOUR
AU  - Cais, Bryden
AU  - Liu, Tong
TI  - On $F$-crystalline representations
JO  - Documenta mathematica
PY  - 2016
SP  - 223
EP  - 270
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a36/
LA  - en
ID  - DOCMA_2016__21__a36
ER  - 
%0 Journal Article
%A Cais, Bryden
%A Liu, Tong
%T On $F$-crystalline representations
%J Documenta mathematica
%D 2016
%P 223-270
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a36/
%G en
%F DOCMA_2016__21__a36
Cais, Bryden; Liu, Tong. On $F$-crystalline representations. Documenta mathematica, Tome 21 (2016), pp. 223-270. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a36/