Some endoscopic properties of the essentially tame Jacquet-Langlands correspondence
Documenta mathematica, Tome 21 (2016), pp. 345-389.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $F$ be a non-Archimedean local field of characteristic 0 and $G$ be an inner form of the general linear group $G^*=GL$_n over $F$. We show that the rectifying character appearing in the essentially tame Jacquet-Langlands correspondence of Bushnell and Henniart for $G$ and $G^*$ can be factorized into a product of some special characters, called zeta-data in this paper, in the theory of endoscopy of Langlands and Shelstad. As a consequence, the essentially tame local Langlands correspondence for $G$ can be described using admissible embeddings of L-tori.
Classification : 22E50, 11S37, 11F70
Keywords: essentially tame Jacquet-Langlands correspondence, inner forms, admissible pairs, zeta-data, endoscopy, admissible embeddings
@article{DOCMA_2016__21__a32,
     author = {Tam, Kam-Fai},
     title = {Some endoscopic properties of the essentially tame {Jacquet-Langlands} correspondence},
     journal = {Documenta mathematica},
     pages = {345--389},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a32/}
}
TY  - JOUR
AU  - Tam, Kam-Fai
TI  - Some endoscopic properties of the essentially tame Jacquet-Langlands correspondence
JO  - Documenta mathematica
PY  - 2016
SP  - 345
EP  - 389
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a32/
LA  - en
ID  - DOCMA_2016__21__a32
ER  - 
%0 Journal Article
%A Tam, Kam-Fai
%T Some endoscopic properties of the essentially tame Jacquet-Langlands correspondence
%J Documenta mathematica
%D 2016
%P 345-389
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a32/
%G en
%F DOCMA_2016__21__a32
Tam, Kam-Fai. Some endoscopic properties of the essentially tame Jacquet-Langlands correspondence. Documenta mathematica, Tome 21 (2016), pp. 345-389. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a32/