Remarks on $L^p$-boundedness of wave operators for Schrödinger operators with threshold singularities
Documenta mathematica, Tome 21 (2016), pp. 391-443.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the continuity property in Lebesgue spaces $L^{p}(\R^{m})$ of the wave operators $W_\pm$ of scattering theory for Schrödinger operators $H=-\lap + V$ on $\R$^m, $|V(x)|\le C\ax$^-delta for some $\delta>2$ when $H$ is of exceptional type, i.e. $\Ng={u \in \ax^{s} L^{2}(\R^{m}) \colon (1+ (-\lap)^{-1}V)u=0 }\not={0}$ for some $1/2\delta-1/2$. It has recently been proved by Goldberg and Green for $m\ge 5$ that $W_\pm$ are in general bounded in $L^{p}(\R^{m})$ for $1\le p/2$, for $1\le p$ if all $\f\in \Ng$ satisfy $\int_{\R^{m}} V\f dx=0$ and, for $1\le p\infty$ if $\int_{\R^{m}} x_{i} V\f dx=0, i=1, \dots, m$ in addition. We make the results for $p>m/2$ more precise and prove in particular that these conditions are also necessary for the stated properties of $W_\pm$. We also prove that, for $m=3, W_\pm$ are bounded in $L^{p}(\R^{3})$ for $13$ and that the same holds for $1\infty$ if and only if all $\f\in \Ng$ satisfy $\int_{\R^{3}}V\f dx=0$ and $\int_{\R^{3}} x_{i} V\f dx=0, i=1, 2, 3$, simultaneously.
Classification : 35P25, 81U05, 47A40
@article{DOCMA_2016__21__a31,
     author = {Yajima, K.},
     title = {Remarks on $L^p$-boundedness of wave operators for {Schr\"odinger} operators with threshold singularities},
     journal = {Documenta mathematica},
     pages = {391--443},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a31/}
}
TY  - JOUR
AU  - Yajima, K.
TI  - Remarks on $L^p$-boundedness of wave operators for Schrödinger operators with threshold singularities
JO  - Documenta mathematica
PY  - 2016
SP  - 391
EP  - 443
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a31/
LA  - en
ID  - DOCMA_2016__21__a31
ER  - 
%0 Journal Article
%A Yajima, K.
%T Remarks on $L^p$-boundedness of wave operators for Schrödinger operators with threshold singularities
%J Documenta mathematica
%D 2016
%P 391-443
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a31/
%G en
%F DOCMA_2016__21__a31
Yajima, K. Remarks on $L^p$-boundedness of wave operators for Schrödinger operators with threshold singularities. Documenta mathematica, Tome 21 (2016), pp. 391-443. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a31/