On superspecial abelian surfaces over finite fields
Documenta mathematica, Tome 21 (2016), pp. 1607-1643.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper we establish a new lattice description for superspecial abelian varieties over a finite field $\mathbb F_q$ of $q=p^{a}$ elements. Our description depends on the parity of the exponent $a$ of $q$. When $q$ is an odd power of the prime $p$, we give an explicit formula for the number of superspecial abelian surfaces over $\mathbb F_q$.
Classification : 11G20, 11G10
Keywords: supersingular abelian surfaces, class number formula, Galois cohomology
@article{DOCMA_2016__21__a3,
     author = {Xue, Jiangwei and Yang, Tse-Chung and Yu, Chia-Fu},
     title = {On superspecial abelian surfaces over finite fields},
     journal = {Documenta mathematica},
     pages = {1607--1643},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a3/}
}
TY  - JOUR
AU  - Xue, Jiangwei
AU  - Yang, Tse-Chung
AU  - Yu, Chia-Fu
TI  - On superspecial abelian surfaces over finite fields
JO  - Documenta mathematica
PY  - 2016
SP  - 1607
EP  - 1643
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a3/
LA  - en
ID  - DOCMA_2016__21__a3
ER  - 
%0 Journal Article
%A Xue, Jiangwei
%A Yang, Tse-Chung
%A Yu, Chia-Fu
%T On superspecial abelian surfaces over finite fields
%J Documenta mathematica
%D 2016
%P 1607-1643
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a3/
%G en
%F DOCMA_2016__21__a3
Xue, Jiangwei; Yang, Tse-Chung; Yu, Chia-Fu. On superspecial abelian surfaces over finite fields. Documenta mathematica, Tome 21 (2016), pp. 1607-1643. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a3/