Some results on Bessel functionals for GSp(4)
Documenta mathematica, Tome 21 (2016), pp. 467-553.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that every irreducible, admissible representation $\pi$ of $\GSp(4,F)$, where $F$ is a non-archimedean local field of characteristic zero, admits a Bessel functional, provided $\pi$ is not one-dimensional. If $\pi$ is not supercuspidal, we explicitly determine the set of all Bessel functionals admitted by $\pi$, and prove that Bessel functionals of a fixed type are unique. If $\pi$ is supercuspidal, we do the same for all split Bessel functionals.
Classification : 11F70, 22E50
@article{DOCMA_2016__21__a29,
     author = {Roberts, Brooks and Schmidt, Ralf},
     title = {Some results on {Bessel} functionals for {GSp(4)}},
     journal = {Documenta mathematica},
     pages = {467--553},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a29/}
}
TY  - JOUR
AU  - Roberts, Brooks
AU  - Schmidt, Ralf
TI  - Some results on Bessel functionals for GSp(4)
JO  - Documenta mathematica
PY  - 2016
SP  - 467
EP  - 553
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a29/
LA  - en
ID  - DOCMA_2016__21__a29
ER  - 
%0 Journal Article
%A Roberts, Brooks
%A Schmidt, Ralf
%T Some results on Bessel functionals for GSp(4)
%J Documenta mathematica
%D 2016
%P 467-553
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a29/
%G en
%F DOCMA_2016__21__a29
Roberts, Brooks; Schmidt, Ralf. Some results on Bessel functionals for GSp(4). Documenta mathematica, Tome 21 (2016), pp. 467-553. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a29/