Decomposable cycles and Noether-Lefschetz loci
Documenta mathematica, Tome 21 (2016), pp. 661-687.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that there exist smooth surfaces of degree $d$ in $\PP$^3 whose group of rational equivalence classes of decomposable 0-cycles has rank at least $\lfloor \frac{d-1}3\rfloor$.
Classification : 14C15
Keywords: decomposable cycles, Noether-Lefschetz loci
@article{DOCMA_2016__21__a26,
     author = {O'Grady, Kieran G.},
     title = {Decomposable cycles and {Noether-Lefschetz} loci},
     journal = {Documenta mathematica},
     pages = {661--687},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a26/}
}
TY  - JOUR
AU  - O'Grady, Kieran G.
TI  - Decomposable cycles and Noether-Lefschetz loci
JO  - Documenta mathematica
PY  - 2016
SP  - 661
EP  - 687
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a26/
LA  - en
ID  - DOCMA_2016__21__a26
ER  - 
%0 Journal Article
%A O'Grady, Kieran G.
%T Decomposable cycles and Noether-Lefschetz loci
%J Documenta mathematica
%D 2016
%P 661-687
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a26/
%G en
%F DOCMA_2016__21__a26
O'Grady, Kieran G. Decomposable cycles and Noether-Lefschetz loci. Documenta mathematica, Tome 21 (2016), pp. 661-687. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a26/