Hyperplane mass partitions via relative equivariant obstruction theory
Documenta mathematica, Tome 21 (2016), pp. 735-771.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Grünbaum--Hadwiger--Ramos hyperplane mass partition problem was introduced by Grünbaum (1960) in a special case and in general form by Ramos (1996). It asks for the «admissible» triples $(d,j,k)$ such that for any $j$ masses in $\R$^d there are $k$ hyperplanes that cut each of the masses into 2^k equal parts. Ramos' conjecture is that the Avis--Ramos necessary lower bound condition $dk\ge j(2^{k}-1)$ is also sufficient. We develop a «join scheme» for this problem, such that non-existence of an ${\Sym_{k}^\pm}$-equivariant map between spheres $(S^{d})^{*k} \rightarrow S(W_{k}\oplus U_{k}^{\oplus j})$ that extends a test map on the subspace of $(S^{d})$^*k where the hyperoctahedral group $\Sym_{k}^\pm$ acts non-freely, implies that $(d,j,k)$ is admissible. For the sphere $(S^{d})$^*k we obtain a very efficient regular cell decomposition, whose cells get a combinatorial interpretation with respect to measures on a modified moment curve. This allows us to apply relative equivariant obstruction theory successfully, even in the case when the difference of dimensions of the spheres $(S^{d})$^*k and $S(W_{k}\oplus U_{k}^{\oplus j})$ is greater than one. The evaluation of obstruction classes leads to counting problems for concatenated Gray codes. Thus we give a rigorous, unified treatment of the previously announced cases of the Grünbaum--Hadwiger--Ramos problem, as well as a number of new cases for Ramos' conjecture.
Classification : 55N25, 51N20, 52A35, 55R20
Keywords: hyperplane mass partition problem, equi­variant topological combinatorics, equivariant obstruction theory
@article{DOCMA_2016__21__a24,
     author = {Blagojevi\'c, Pavle V.M. and Frick, Florian and Haase, Albert and Ziegler, G\"unter M.},
     title = {Hyperplane mass partitions via relative equivariant obstruction theory},
     journal = {Documenta mathematica},
     pages = {735--771},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a24/}
}
TY  - JOUR
AU  - Blagojević, Pavle V.M.
AU  - Frick, Florian
AU  - Haase, Albert
AU  - Ziegler, Günter M.
TI  - Hyperplane mass partitions via relative equivariant obstruction theory
JO  - Documenta mathematica
PY  - 2016
SP  - 735
EP  - 771
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a24/
LA  - en
ID  - DOCMA_2016__21__a24
ER  - 
%0 Journal Article
%A Blagojević, Pavle V.M.
%A Frick, Florian
%A Haase, Albert
%A Ziegler, Günter M.
%T Hyperplane mass partitions via relative equivariant obstruction theory
%J Documenta mathematica
%D 2016
%P 735-771
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a24/
%G en
%F DOCMA_2016__21__a24
Blagojević, Pavle V.M.; Frick, Florian; Haase, Albert; Ziegler, Günter M. Hyperplane mass partitions via relative equivariant obstruction theory. Documenta mathematica, Tome 21 (2016), pp. 735-771. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a24/