Gerstenhaber-schack and Hochschild cohomologies of Hopf algebras
Documenta mathematica, Tome 21 (2016), pp. 955-986.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the Gerstenhaber-Schack cohomology of a Hopf algebra determines its Hochschild cohomology, and in particular its Gerstenhaber-Schack cohomological dimension bounds its Hochschild cohomological dimension, with equality of the dimensions when the Hopf algebra is cosemisimple of Kac type. Together with some general considerations on free Yetter-Drinfeld modules over adjoint Hopf subalgebras and the monoidal invariance of Gerstenhaber-Schack cohomology, this is used to show that both Gerstenhaber-Schack and Hochschild cohomological dimensions of the coordinate algebra of the quantum permutation group are 3.
Classification : 16T05, 16E40, 16E10
Keywords: Hopf algebra, cohomology, cohomological dimension, Yetter-Drinfeld module
@article{DOCMA_2016__21__a18,
     author = {Bichon, Julien},
     title = {Gerstenhaber-schack and {Hochschild} cohomologies of {Hopf} algebras},
     journal = {Documenta mathematica},
     pages = {955--986},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a18/}
}
TY  - JOUR
AU  - Bichon, Julien
TI  - Gerstenhaber-schack and Hochschild cohomologies of Hopf algebras
JO  - Documenta mathematica
PY  - 2016
SP  - 955
EP  - 986
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a18/
LA  - en
ID  - DOCMA_2016__21__a18
ER  - 
%0 Journal Article
%A Bichon, Julien
%T Gerstenhaber-schack and Hochschild cohomologies of Hopf algebras
%J Documenta mathematica
%D 2016
%P 955-986
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a18/
%G en
%F DOCMA_2016__21__a18
Bichon, Julien. Gerstenhaber-schack and Hochschild cohomologies of Hopf algebras. Documenta mathematica, Tome 21 (2016), pp. 955-986. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a18/