A new discriminant algebra construction
Documenta mathematica, Tome 21 (2016), pp. 1051-1088.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A discriminant algebra operation sends a commutative ring $R$ and an $R$-algebra $A$ of rank $n$ to an $R$-algebra $\Delta$_A/R of rank 2 with the same discriminant bilinear form. Constructions of discriminant algebra operations have been put forward by Rost, Deligne, and Loos. We present a simpler and more explicit construction that does not break down into cases based on the parity of $n$. We then prove properties of this construction, and compute some examples explicitly.
Classification : 13B02, 14B25, 11R11, 13B40, 13C10
Keywords: discriminant algebra, discriminant form, algebra of finite rank, étale algebra, polynomial law
@article{DOCMA_2016__21__a16,
     author = {Biesel, Owen and Gioia, Alberto},
     title = {A new discriminant algebra construction},
     journal = {Documenta mathematica},
     pages = {1051--1088},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a16/}
}
TY  - JOUR
AU  - Biesel, Owen
AU  - Gioia, Alberto
TI  - A new discriminant algebra construction
JO  - Documenta mathematica
PY  - 2016
SP  - 1051
EP  - 1088
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a16/
LA  - en
ID  - DOCMA_2016__21__a16
ER  - 
%0 Journal Article
%A Biesel, Owen
%A Gioia, Alberto
%T A new discriminant algebra construction
%J Documenta mathematica
%D 2016
%P 1051-1088
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a16/
%G en
%F DOCMA_2016__21__a16
Biesel, Owen; Gioia, Alberto. A new discriminant algebra construction. Documenta mathematica, Tome 21 (2016), pp. 1051-1088. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a16/