Categorified trace for module tensor categories over braided tensor categories
Documenta mathematica, Tome 21 (2016), pp. 1089-1149.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a braided pivotal category $\cC$ and a pivotal module tensor category $\cM$, we define a functor $\Tr_\cC:\cM \to \cC$, called the associated categorified trace. By a result of Bezrukavnikov, Finkelberg and Ostrik, the functor $\Tr_\cC$ comes equipped with natural isomorphisms $\tau_{x,y}:\Tr_\cC(x \otimes y) \to \Tr_\cC(y \otimes x)$, which we call the traciators. This situation lends itself to a diagramatic calculus of `strings on cylinders', where the traciator corresponds to wrapping a string around the back of a cylinder. We show that $\Tr_\cC$ in fact has a much richer graphical calculus in which the tubes are allowed to branch and braid. Given algebra objects $A$ and $B$, we prove that $\Tr_\cC(A)$ and $\Tr_\cC(A \otimes B)$ are again algebra objects. Moreover, provided certain mild assumptions are satisfied, $\Tr_\cC(A)$ and $\Tr_\cC(A \otimes B)$ are semisimple whenever $A$ and $B$ are semisimple.
Classification : 18D10
@article{DOCMA_2016__21__a15,
     author = {Henriques, Andr\'e and Penneys, David and Tener, James},
     title = {Categorified trace for module tensor categories over braided tensor categories},
     journal = {Documenta mathematica},
     pages = {1089--1149},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a15/}
}
TY  - JOUR
AU  - Henriques, André
AU  - Penneys, David
AU  - Tener, James
TI  - Categorified trace for module tensor categories over braided tensor categories
JO  - Documenta mathematica
PY  - 2016
SP  - 1089
EP  - 1149
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a15/
LA  - en
ID  - DOCMA_2016__21__a15
ER  - 
%0 Journal Article
%A Henriques, André
%A Penneys, David
%A Tener, James
%T Categorified trace for module tensor categories over braided tensor categories
%J Documenta mathematica
%D 2016
%P 1089-1149
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a15/
%G en
%F DOCMA_2016__21__a15
Henriques, André; Penneys, David; Tener, James. Categorified trace for module tensor categories over braided tensor categories. Documenta mathematica, Tome 21 (2016), pp. 1089-1149. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a15/