Minimax principles, Hardy-Dirac inequalities, and operator cores for two and three dimensional Coulomb-Dirac operators
Documenta mathematica, Tome 21 (2016), pp. 1151-1169.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For $n\in{2,3}$ we prove minimax characterisations of eigenvalues in the gap of the $n$ dimensional Dirac operator with an potential, which may have a Coulomb singularity with a coupling constant up to the critical value $1/(4-n)$. This result implies a so-called Hardy-Dirac inequality, which can be used to define a distinguished self-adjoint extension of the Coulomb-Dirac operator defined on $C_{0}^{\infty}(\{R}^{n}\setminus{0};\{C}^{2(n-1)})$, as long as the coupling constant does not exceed $1/(4-n)$. We also find an explicit description of an operator core of this operator.
Classification : 49R05, 49J35, 81Q10
Keywords: minimax principle, Hardy-Dirac inequality, Coulomb-Dirac operator
@article{DOCMA_2016__21__a14,
     author = {M\"uller, David},
     title = {Minimax principles, {Hardy-Dirac} inequalities, and operator cores for two and three dimensional {Coulomb-Dirac} operators},
     journal = {Documenta mathematica},
     pages = {1151--1169},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a14/}
}
TY  - JOUR
AU  - Müller, David
TI  - Minimax principles, Hardy-Dirac inequalities, and operator cores for two and three dimensional Coulomb-Dirac operators
JO  - Documenta mathematica
PY  - 2016
SP  - 1151
EP  - 1169
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a14/
LA  - en
ID  - DOCMA_2016__21__a14
ER  - 
%0 Journal Article
%A Müller, David
%T Minimax principles, Hardy-Dirac inequalities, and operator cores for two and three dimensional Coulomb-Dirac operators
%J Documenta mathematica
%D 2016
%P 1151-1169
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a14/
%G en
%F DOCMA_2016__21__a14
Müller, David. Minimax principles, Hardy-Dirac inequalities, and operator cores for two and three dimensional Coulomb-Dirac operators. Documenta mathematica, Tome 21 (2016), pp. 1151-1169. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a14/