On the uniqueness of the injective $\mathrm{III}_{1}$ factor
Documenta mathematica, Tome 21 (2016), pp. 1193-1226.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give a new proof of a theorem due to Alain Connes, that an injective factor $N$ of type III_1 with separable predual and with trivial bicentralizer is isomorphic to the Araki--Woods type III_1 factor $R$_infty. This, combined with the author's solution to the bicentralizer problem for injective III_1 factors provides a new proof of the theorem that up to *-isomorphism, there exists a unique injective factor of type III_1 on a separable Hilbert space.
Classification : 46L36
@article{DOCMA_2016__21__a12,
     author = {Haagerup, Uffe},
     title = {On the uniqueness of the injective $\mathrm{III}_{1}$ factor},
     journal = {Documenta mathematica},
     pages = {1193--1226},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a12/}
}
TY  - JOUR
AU  - Haagerup, Uffe
TI  - On the uniqueness of the injective $\mathrm{III}_{1}$ factor
JO  - Documenta mathematica
PY  - 2016
SP  - 1193
EP  - 1226
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a12/
LA  - en
ID  - DOCMA_2016__21__a12
ER  - 
%0 Journal Article
%A Haagerup, Uffe
%T On the uniqueness of the injective $\mathrm{III}_{1}$ factor
%J Documenta mathematica
%D 2016
%P 1193-1226
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a12/
%G en
%F DOCMA_2016__21__a12
Haagerup, Uffe. On the uniqueness of the injective $\mathrm{III}_{1}$ factor. Documenta mathematica, Tome 21 (2016), pp. 1193-1226. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a12/