Bredon homology of partition complexes
Documenta mathematica, Tome 21 (2016), pp. 1227-1268.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove that the Bredon homology or cohomology of the partition complex with fairly general coefficients is either trivial or computable in terms of constructions with the Steinberg module. The argument involves a theory of Bredon homology and cohomology approximation.
Classification : 55N91, 55R40
Keywords: homology approximations, equivariant approximations, Bredon homology, partition complexes
@article{DOCMA_2016__21__a11,
     author = {Arone, G. Z. and Dwyer, W. G. and Lesh, K.},
     title = {Bredon homology of partition complexes},
     journal = {Documenta mathematica},
     pages = {1227--1268},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a11/}
}
TY  - JOUR
AU  - Arone, G. Z.
AU  - Dwyer, W. G.
AU  - Lesh, K.
TI  - Bredon homology of partition complexes
JO  - Documenta mathematica
PY  - 2016
SP  - 1227
EP  - 1268
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a11/
LA  - en
ID  - DOCMA_2016__21__a11
ER  - 
%0 Journal Article
%A Arone, G. Z.
%A Dwyer, W. G.
%A Lesh, K.
%T Bredon homology of partition complexes
%J Documenta mathematica
%D 2016
%P 1227-1268
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a11/
%G en
%F DOCMA_2016__21__a11
Arone, G. Z.; Dwyer, W. G.; Lesh, K. Bredon homology of partition complexes. Documenta mathematica, Tome 21 (2016), pp. 1227-1268. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a11/