Continuous cohomology and homology of profinite groups
Documenta mathematica, Tome 21 (2016), pp. 1269-1312.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We develop cohomological and homological theories for a profinite group $G$ with coefficients in the Pontryagin dual categories of pro-discrete and ind-profinite $G$-modules, respectively. The standard results of group (co)homology hold for this theory: we prove versions of the Universal Coefficient Theorem, the Lyndon-Hochschild-Serre spectral sequence and Shapiro's Lemma.
Classification : 20E18, 20J06, 20J05, 13J10
Keywords: continuous cohomology, profinite groups, quasi-abelian categories
@article{DOCMA_2016__21__a10,
     author = {Boggi, Marco and Cook, Ged Corob},
     title = {Continuous cohomology and homology of profinite groups},
     journal = {Documenta mathematica},
     pages = {1269--1312},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a10/}
}
TY  - JOUR
AU  - Boggi, Marco
AU  - Cook, Ged Corob
TI  - Continuous cohomology and homology of profinite groups
JO  - Documenta mathematica
PY  - 2016
SP  - 1269
EP  - 1312
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a10/
LA  - en
ID  - DOCMA_2016__21__a10
ER  - 
%0 Journal Article
%A Boggi, Marco
%A Cook, Ged Corob
%T Continuous cohomology and homology of profinite groups
%J Documenta mathematica
%D 2016
%P 1269-1312
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a10/
%G en
%F DOCMA_2016__21__a10
Boggi, Marco; Cook, Ged Corob. Continuous cohomology and homology of profinite groups. Documenta mathematica, Tome 21 (2016), pp. 1269-1312. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a10/