The Mumford-Tate conjecture for the product of an abelian surface and a $K3$ surface
Documenta mathematica, Tome 21 (2016), pp. 1691-1713.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The Mumford-Tate conjecture is a precise way of saying that the Hodge structure on singular cohomology conveys the same information as the Galois representation on $\ell$-adic étale cohomology, for an algebraic variety over a finitely generated field of characteristic 0. This paper presents a proof of the Mumford-Tate conjecture in degree 2 for the product of an abelian surface and a K3 surface.
Classification : 14C15, 14C30, 11G10, 14J28
Keywords: Mumford-Tate conjecture, abelian surface, \(K3\) surface, product of an abelian surface and a \(K3\) surface
@article{DOCMA_2016__21__a0,
     author = {Commelin, Johan},
     title = {The {Mumford-Tate} conjecture for the product of an abelian surface and a {\(K3\)} surface},
     journal = {Documenta mathematica},
     pages = {1691--1713},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a0/}
}
TY  - JOUR
AU  - Commelin, Johan
TI  - The Mumford-Tate conjecture for the product of an abelian surface and a \(K3\) surface
JO  - Documenta mathematica
PY  - 2016
SP  - 1691
EP  - 1713
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a0/
LA  - en
ID  - DOCMA_2016__21__a0
ER  - 
%0 Journal Article
%A Commelin, Johan
%T The Mumford-Tate conjecture for the product of an abelian surface and a \(K3\) surface
%J Documenta mathematica
%D 2016
%P 1691-1713
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a0/
%G en
%F DOCMA_2016__21__a0
Commelin, Johan. The Mumford-Tate conjecture for the product of an abelian surface and a \(K3\) surface. Documenta mathematica, Tome 21 (2016), pp. 1691-1713. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a0/