Quotients of MGL, their slices and their geometric parts
Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 407-442.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $x_1, x_2,\dots$ be a system of homogeneous polynomial generators for the Lazard ring $\mathbb L^\ast=MU^{2\ast}$ and let $MGL_S$ denote Voevodsky's algebraic cobordism spectrum in the motivic stable homotopy category over a base-scheme $S$ [V. Voevodsky, ibid., 417--442 (1998; Zbl 0907.19002)]. Relying on Hopkins-Morel-Hoyois isomorphism [M. Hoyois, J. Reine Angew. Math. 702, 173--226 (2015; Zbl 1382.14006)] of the 0th slice $s_0MGL_S$ for Voevodsky's slice tower with $MGL_S/(x_1, x_2,\dots)$ (after inverting all residue characteristics of $S$), M. Spitzweck [Homology Homotopy Appl. 12, No. 2, 335--351 (2010; Zbl 1209.14019)] computes the remaining slices of $MGL_S$ as $s_nMGL_S=\sum^n_TH\mathbb Z \otimes \mathbb L^{-n}$ (again, after inverting all residue characteristics of $S$). We apply Spitzweck's method to compute the slices of a quotient spectrum $MGL_S/(\{x_i:i \in I\})$ for $I$ an arbitrary subset of $\mathbb N$, as well as the ${mod } p$ version $MGL_S/(\{p, x_i:i \in I\})$ and localizations with respect to a system of homogeneous elements in $\mathbb Z[\{x_j:j \not\in I\}]$. In case $S=\operatorname{Spec} k$, $k$ a field of characteristic zero, we apply this to show that for $\mathcal E$ a localization of a quotient of $MGL$ as above, there is a natural isomorphism for the theory with support $$ \Omega_\ast (X) \otimes _{\mathbb L^{-\ast}}\mathcal E^{-2\ast,-\ast}(k) \to \mathcal E^{2m-2\ast, m-\ast}(M)$$ for $X$ a closed subscheme of a smooth quasi-projective $k$-scheme $M$, $m=\dim_k M$.
Classification : 14F43, 18G55, 55P43, 55U35
@article{DOCMA_2015__S2__a9,
     author = {Levine, Marc and Tripathi, Girja Shanker},
     title = {Quotients of {MGL,} their slices and their geometric parts},
     journal = {Documenta mathematica},
     pages = {407--442},
     publisher = {mathdoc},
     volume = {Alexander S. Merkurjev's Sixtieth Birthday},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a9/}
}
TY  - JOUR
AU  - Levine, Marc
AU  - Tripathi, Girja Shanker
TI  - Quotients of MGL, their slices and their geometric parts
JO  - Documenta mathematica
PY  - 2015
SP  - 407
EP  - 442
VL  - Alexander S. Merkurjev's Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a9/
LA  - en
ID  - DOCMA_2015__S2__a9
ER  - 
%0 Journal Article
%A Levine, Marc
%A Tripathi, Girja Shanker
%T Quotients of MGL, their slices and their geometric parts
%J Documenta mathematica
%D 2015
%P 407-442
%V Alexander S. Merkurjev's Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a9/
%G en
%F DOCMA_2015__S2__a9
Levine, Marc; Tripathi, Girja Shanker. Quotients of MGL, their slices and their geometric parts. Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 407-442. http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a9/