Rationally isotropic exceptional projective homogeneous varieties are locally isotropic
Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 491-500.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Assume that $R$ is a regular local ring that contains an infinite field and whose field of fractions $K$ has charactertistic $\ne 2$. Let $X$ be an exceptional projective homogeneous scheme over $R$. We prove that in most cases the condition $X(K)\neq\emptyset$ implies $X(R)\neq\emptyset$.
Classification : 14M17, 20G35
Keywords: projective homogeneous varieties, rational points, exceptional groups
@article{DOCMA_2015__S2__a4,
     author = {Panin, I. and Petrov, V.},
     title = {Rationally isotropic exceptional projective homogeneous varieties are locally isotropic},
     journal = {Documenta mathematica},
     pages = {491--500},
     publisher = {mathdoc},
     volume = {Alexander S. Merkurjev's Sixtieth Birthday},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a4/}
}
TY  - JOUR
AU  - Panin, I.
AU  - Petrov, V.
TI  - Rationally isotropic exceptional projective homogeneous varieties are locally isotropic
JO  - Documenta mathematica
PY  - 2015
SP  - 491
EP  - 500
VL  - Alexander S. Merkurjev's Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a4/
LA  - en
ID  - DOCMA_2015__S2__a4
ER  - 
%0 Journal Article
%A Panin, I.
%A Petrov, V.
%T Rationally isotropic exceptional projective homogeneous varieties are locally isotropic
%J Documenta mathematica
%D 2015
%P 491-500
%V Alexander S. Merkurjev's Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a4/
%G en
%F DOCMA_2015__S2__a4
Panin, I.; Petrov, V. Rationally isotropic exceptional projective homogeneous varieties are locally isotropic. Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 491-500. http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a4/