Stably Cayley semisimple groups.
Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 85-112.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

A linear algebraic group $G$ over a field $k$ is called a Cayley group if it admits a Cayley map, i.e., a $G$-equivariant birational isomorphism over $k$ between the group variety $G$ and its Lie algebra Lie$(G)$. A prototypical example is the classical "Cayley transform" for the special orthogonal group $\bold{SO}_n$ defined by Arthur Cayley in 1846. A linear algebraic group $G$ is called stably Cayley if $G \times S$ is Cayley for some split $k$-torus $S$. We classify stably Cayley semisimple groups over an arbitrary field $k$ of characteristic 0.
Classification : 20G15, 14L35, 14E05
Keywords: linear algebraic groups, Cayley groups, stably Cayley groups, character lattices, quasi-permutation lattices, Weil restriction of scalars
@article{DOCMA_2015__S2__a19,
     author = {Borovoi, Mikhail and Kunyavskii, Boris},
     title = {Stably {Cayley} semisimple groups.},
     journal = {Documenta mathematica},
     pages = {85--112},
     publisher = {mathdoc},
     volume = {Alexander S. Merkurjev's Sixtieth Birthday},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a19/}
}
TY  - JOUR
AU  - Borovoi, Mikhail
AU  - Kunyavskii, Boris
TI  - Stably Cayley semisimple groups.
JO  - Documenta mathematica
PY  - 2015
SP  - 85
EP  - 112
VL  - Alexander S. Merkurjev's Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a19/
LA  - en
ID  - DOCMA_2015__S2__a19
ER  - 
%0 Journal Article
%A Borovoi, Mikhail
%A Kunyavskii, Boris
%T Stably Cayley semisimple groups.
%J Documenta mathematica
%D 2015
%P 85-112
%V Alexander S. Merkurjev's Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a19/
%G en
%F DOCMA_2015__S2__a19
Borovoi, Mikhail; Kunyavskii, Boris. Stably Cayley semisimple groups.. Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 85-112. http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a19/