Equivariant oriented cohomology of flag varieties
Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 113-144.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Given an equivariant oriented cohomology theory h, a split reductive group $G$, a maximal torus $T$ in $G$, and a parabolic subgroup $P$ containing $T$, we explain how the $T$-equivariant oriented cohomology ring ${\ssf h}_T(G/P)$ can be identified with the dual of a coalgebra defined using exclusively the root datum of $(G,T)$, a set of simple roots defining $P$ and the formal group law of $\ssf h$. In two papers [Math. Z. 282, No. 3--4, 1191--1218 (2016; Zbl 1362.14024); "Push-pull operators on the formal affine Demazure algebra and its dual", Preprint, arXiv:1312.0019] we studied the properties of this dual and of some related operators by algebraic and combinatorial methods, without any reference to geometry. The present paper can be viewed as a companion paper, that justifies all the definitions of the algebraic objects and operators by explaining how to match them to equivariant oriented cohomology rings endowed with operators constructed using push-forwards and pull-backs along geometric morphisms. Our main tool is the pull-back to the $T$-fixed points of $G/P$ which embeds the cohomology ring in question into a direct product of a finite number of copies of the $T$-equivariant oriented cohomology of a point.
Classification : 14F43, 14M15, 19L41, 55N22, 57T15, 57R85
@article{DOCMA_2015__S2__a18,
     author = {Calm\`es, Baptiste and Zainoulline, Kirill and Zhong, Changlong},
     title = {Equivariant oriented cohomology of flag varieties},
     journal = {Documenta mathematica},
     pages = {113--144},
     publisher = {mathdoc},
     volume = {Alexander S. Merkurjev's Sixtieth Birthday},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a18/}
}
TY  - JOUR
AU  - Calmès, Baptiste
AU  - Zainoulline, Kirill
AU  - Zhong, Changlong
TI  - Equivariant oriented cohomology of flag varieties
JO  - Documenta mathematica
PY  - 2015
SP  - 113
EP  - 144
VL  - Alexander S. Merkurjev's Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a18/
LA  - en
ID  - DOCMA_2015__S2__a18
ER  - 
%0 Journal Article
%A Calmès, Baptiste
%A Zainoulline, Kirill
%A Zhong, Changlong
%T Equivariant oriented cohomology of flag varieties
%J Documenta mathematica
%D 2015
%P 113-144
%V Alexander S. Merkurjev's Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a18/
%G en
%F DOCMA_2015__S2__a18
Calmès, Baptiste; Zainoulline, Kirill; Zhong, Changlong. Equivariant oriented cohomology of flag varieties. Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 113-144. http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a18/