$K$-theory as an Eilenberg-Mac Lane spectrum
Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 335-365.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For an additive Waldhausen category linear over a ring $k$, the corresponding $K$-theory spectrum is a module spectrum over the $K$-theory spectrum of $k$. Thus if $k$ is a finite field of characteristic $p$, then after localization at $p$, we obtain an Eilenberg-MacLane spectrum -- in other words, a chain complex. We propose an elementary and direct construction of this chain complex that behaves well in families and uses only methods of homological algebra (in particular, the notions of a ring spectrum and a module spectrum are not used).
Classification : 19D50, 13D15
Keywords: Waldhausen $K$-theory, Eilenberg-MacLane spectrum
@article{DOCMA_2015__S2__a12,
     author = {Kaledin, D.},
     title = {$K$-theory as an {Eilenberg-Mac} {Lane} spectrum},
     journal = {Documenta mathematica},
     pages = {335--365},
     publisher = {mathdoc},
     volume = {Alexander S. Merkurjev's Sixtieth Birthday},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a12/}
}
TY  - JOUR
AU  - Kaledin, D.
TI  - $K$-theory as an Eilenberg-Mac Lane spectrum
JO  - Documenta mathematica
PY  - 2015
SP  - 335
EP  - 365
VL  - Alexander S. Merkurjev's Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a12/
LA  - en
ID  - DOCMA_2015__S2__a12
ER  - 
%0 Journal Article
%A Kaledin, D.
%T $K$-theory as an Eilenberg-Mac Lane spectrum
%J Documenta mathematica
%D 2015
%P 335-365
%V Alexander S. Merkurjev's Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a12/
%G en
%F DOCMA_2015__S2__a12
Kaledin, D. $K$-theory as an Eilenberg-Mac Lane spectrum. Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 335-365. http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a12/