Minimal canonical dimensions of quadratic forms
Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 367-385.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Canonical dimension of a smooth complete connected variety is the minimal dimension of image of its rational endomorphism. The $i$-th canonical dimension of a non-degenerate quadratic form is the canonical dimension of its $i$-th orthogonal grassmannian. The maximum of a canonical dimension for quadratic forms of a fixed dimension is known to be equal to the dimension of the corresponding grassmannian. This article is about the minima of the canonical dimensions of an anisotropic quadratic form. We conjecture that they equal the canonical dimensions of an excellent anisotropic quadratic form of the same dimension and we prove it in a wide range of cases.
Classification : 14L17, 14C25
Keywords: algebraic groups, quadratic forms, projective homogeneous varieties, Chow groups and motives
@article{DOCMA_2015__S2__a11,
     author = {Karpenko, Nikita A.},
     title = {Minimal canonical dimensions of quadratic forms},
     journal = {Documenta mathematica},
     pages = {367--385},
     publisher = {mathdoc},
     volume = {Alexander S. Merkurjev's Sixtieth Birthday},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a11/}
}
TY  - JOUR
AU  - Karpenko, Nikita A.
TI  - Minimal canonical dimensions of quadratic forms
JO  - Documenta mathematica
PY  - 2015
SP  - 367
EP  - 385
VL  - Alexander S. Merkurjev's Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a11/
LA  - en
ID  - DOCMA_2015__S2__a11
ER  - 
%0 Journal Article
%A Karpenko, Nikita A.
%T Minimal canonical dimensions of quadratic forms
%J Documenta mathematica
%D 2015
%P 367-385
%V Alexander S. Merkurjev's Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a11/
%G en
%F DOCMA_2015__S2__a11
Karpenko, Nikita A. Minimal canonical dimensions of quadratic forms. Documenta mathematica, Alexander S. Merkurjev's Sixtieth Birthday (2015), pp. 367-385. http://geodesic.mathdoc.fr/item/DOCMA_2015__S2__a11/