Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case
Documenta mathematica, Tome 20 (2015), pp. 1137-1184.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\A$ be a completely rational local Möbius covariant net on $S$^1, which describes a set of chiral observables. We show that local Möbius covariant nets $\cB$_2 on 2D Minkowski space which contains $\A$ as chiral left-right symmetry are in one-to-one correspondence with Morita equivalence classes of Q-systems in the unitary modular tensor category $\DHR(\A)$. The Möbius covariant boundary conditions with symmetry $\A$ of such a net $\cB$_2 are given by the Q-systems in the Morita equivalence class or by simple objects in the module category modulo automorphisms of the dual category. We generalize to reducible boundary conditions. To establish this result we define the notion of Morita equivalence for Q-systems (special symmetric $\ast$-Frobenius algebra objects) and non-degenerately braided subfactors. We prove a conjecture by Kong and Runkel, namely that Rehren's construction (generalized Longo-Rehren construction, $\alpha$-induction construction) coincides with the categorical full center. This gives a new view and new results for the study of braided subfactors.
Classification : 81T40, 18D10, 81R15, 46L37
Keywords: conformal nets, boundary conditions, Q-system, full center, subfactors, modular tensor categories
@article{DOCMA_2015__20__a9,
     author = {Bischoff, Marcel and Kawahigashi, Yasuyuki and Longo, Roberto},
     title = {Characterization of {2D} rational local conformal nets and its boundary conditions: the maximal case},
     journal = {Documenta mathematica},
     pages = {1137--1184},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a9/}
}
TY  - JOUR
AU  - Bischoff, Marcel
AU  - Kawahigashi, Yasuyuki
AU  - Longo, Roberto
TI  - Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case
JO  - Documenta mathematica
PY  - 2015
SP  - 1137
EP  - 1184
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a9/
LA  - en
ID  - DOCMA_2015__20__a9
ER  - 
%0 Journal Article
%A Bischoff, Marcel
%A Kawahigashi, Yasuyuki
%A Longo, Roberto
%T Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case
%J Documenta mathematica
%D 2015
%P 1137-1184
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a9/
%G en
%F DOCMA_2015__20__a9
Bischoff, Marcel; Kawahigashi, Yasuyuki; Longo, Roberto. Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case. Documenta mathematica, Tome 20 (2015), pp. 1137-1184. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a9/