Regularity of projection operators attached to worm domains
Documenta mathematica, Tome 20 (2015), pp. 1207-1225.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We construct a projection operator on an unbounded worm domain which maps subspaces of $W$^s to themselves. The subspaces are determined by a Fourier decomposition of $W$^s according to a rotational invariance of the worm domain.
Classification : 32W05, 35B65, 32T20
@article{DOCMA_2015__20__a7,
     author = {Barrett, David E. and Ehsani, Dariush and Peloso, Marco M.},
     title = {Regularity of projection operators attached to worm domains},
     journal = {Documenta mathematica},
     pages = {1207--1225},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a7/}
}
TY  - JOUR
AU  - Barrett, David E.
AU  - Ehsani, Dariush
AU  - Peloso, Marco M.
TI  - Regularity of projection operators attached to worm domains
JO  - Documenta mathematica
PY  - 2015
SP  - 1207
EP  - 1225
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a7/
LA  - en
ID  - DOCMA_2015__20__a7
ER  - 
%0 Journal Article
%A Barrett, David E.
%A Ehsani, Dariush
%A Peloso, Marco M.
%T Regularity of projection operators attached to worm domains
%J Documenta mathematica
%D 2015
%P 1207-1225
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a7/
%G en
%F DOCMA_2015__20__a7
Barrett, David E.; Ehsani, Dariush; Peloso, Marco M. Regularity of projection operators attached to worm domains. Documenta mathematica, Tome 20 (2015), pp. 1207-1225. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a7/