$\mathcal L$-invariant for Siegel-Hilbert forms
Documenta mathematica, Tome 20 (2015), pp. 1227-1253.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove a formula for the Greenberg--Benois $\Ll$-invariant of the spin, standard and adjoint Galois representations associated with Siegel--Hilbert modular forms. In order to simplify the calculation, we give a new definition of the $\Ll$-invariant for a Galois representation $V$ of a number field $F\neq \Q$; we also check that it is compatible with Benois' definition for $Ind_{F}^{\Q}(V)$.
Classification : 11R23, 11F80, 11F46, 11S25
Keywords: Iwasawa theory, L-invariants, p-adic L-functions, p-adic families of automorphic forms
@article{DOCMA_2015__20__a6,
     author = {Rosso, Giovanni},
     title = {$\mathcal L$-invariant for {Siegel-Hilbert} forms},
     journal = {Documenta mathematica},
     pages = {1227--1253},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a6/}
}
TY  - JOUR
AU  - Rosso, Giovanni
TI  - $\mathcal L$-invariant for Siegel-Hilbert forms
JO  - Documenta mathematica
PY  - 2015
SP  - 1227
EP  - 1253
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a6/
LA  - en
ID  - DOCMA_2015__20__a6
ER  - 
%0 Journal Article
%A Rosso, Giovanni
%T $\mathcal L$-invariant for Siegel-Hilbert forms
%J Documenta mathematica
%D 2015
%P 1227-1253
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a6/
%G en
%F DOCMA_2015__20__a6
Rosso, Giovanni. $\mathcal L$-invariant for Siegel-Hilbert forms. Documenta mathematica, Tome 20 (2015), pp. 1227-1253. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a6/