Rokhlin dimension: obstructions and permanence properties
Documenta mathematica, Tome 20 (2015), pp. 199-236.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper is a further study of finite Rokhlin dimension for actions of finite groups and the integers on $C^*$-algebras, introduced by the first author, Winter, and Zacharias. We extend the definition of finite Rokhlin dimension to the nonunital case. This definition behaves well with respect to extensions, and is sufficient to establish permanence of finite nuclear dimension and $\Zh$-absorption. We establish $K$-theoretic obstructions to the existence of actions of finite groups with finite Rokhlin dimension (in the commuting tower version). In particular, we show that there are no actions of any nontrivial finite group on the Jiang-Su algebra or on the Cuntz algebra $\Oh_{\infty}$ with finite Rokhlin dimension in this sense.
Classification : 46L55
@article{DOCMA_2015__20__a35,
     author = {Hirshberg, Ilan and Phillips, N.Christopher},
     title = {Rokhlin dimension: obstructions and permanence properties},
     journal = {Documenta mathematica},
     pages = {199--236},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a35/}
}
TY  - JOUR
AU  - Hirshberg, Ilan
AU  - Phillips, N.Christopher
TI  - Rokhlin dimension: obstructions and permanence properties
JO  - Documenta mathematica
PY  - 2015
SP  - 199
EP  - 236
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a35/
LA  - en
ID  - DOCMA_2015__20__a35
ER  - 
%0 Journal Article
%A Hirshberg, Ilan
%A Phillips, N.Christopher
%T Rokhlin dimension: obstructions and permanence properties
%J Documenta mathematica
%D 2015
%P 199-236
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a35/
%G en
%F DOCMA_2015__20__a35
Hirshberg, Ilan; Phillips, N.Christopher. Rokhlin dimension: obstructions and permanence properties. Documenta mathematica, Tome 20 (2015), pp. 199-236. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a35/