Equivariant operational Chow rings of $T$-linear schemes
Documenta mathematica, Tome 20 (2015), pp. 401-432.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study $T$-linear schemes, a class of objects that includes spherical and Schubert varieties. We provide a localization theorem for the equivariant Chow cohomology of these schemes that does not depend on resolution of singularities. Furthermore, we give an explicit presentation of the equivariant Chow cohomology of possibly singular complete spherical varieties admitting a smooth equivariant envelope (e.g., group embeddings).
Classification : 14M27, 14L30, 20M32
Keywords: spherical varieties, Chow cohomology, Kronecker duality, intersection theory
@article{DOCMA_2015__20__a30,
     author = {Gonzales, Richard P.},
     title = {Equivariant operational {Chow} rings of $T$-linear schemes},
     journal = {Documenta mathematica},
     pages = {401--432},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a30/}
}
TY  - JOUR
AU  - Gonzales, Richard P.
TI  - Equivariant operational Chow rings of $T$-linear schemes
JO  - Documenta mathematica
PY  - 2015
SP  - 401
EP  - 432
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a30/
LA  - en
ID  - DOCMA_2015__20__a30
ER  - 
%0 Journal Article
%A Gonzales, Richard P.
%T Equivariant operational Chow rings of $T$-linear schemes
%J Documenta mathematica
%D 2015
%P 401-432
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a30/
%G en
%F DOCMA_2015__20__a30
Gonzales, Richard P. Equivariant operational Chow rings of $T$-linear schemes. Documenta mathematica, Tome 20 (2015), pp. 401-432. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a30/