Invariant blocks under coprime actions
Documenta mathematica, Tome 20 (2015), pp. 491-506.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: If a finite group $A$ acts coprimely as automorphisms on a finite group $G$, then the $A$-invariant Brauer $p$-blocks of $G$ are exactly those that contain $A$-invariant irreducible characters.
Classification : 20C15, 20C20, 20C33
Keywords: coprime action, blocks, characters
@article{DOCMA_2015__20__a28,
     author = {Malle, Gunter and Navarro, Gabriel and Sp\"ath, Britta},
     title = {Invariant blocks under coprime actions},
     journal = {Documenta mathematica},
     pages = {491--506},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a28/}
}
TY  - JOUR
AU  - Malle, Gunter
AU  - Navarro, Gabriel
AU  - Späth, Britta
TI  - Invariant blocks under coprime actions
JO  - Documenta mathematica
PY  - 2015
SP  - 491
EP  - 506
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a28/
LA  - en
ID  - DOCMA_2015__20__a28
ER  - 
%0 Journal Article
%A Malle, Gunter
%A Navarro, Gabriel
%A Späth, Britta
%T Invariant blocks under coprime actions
%J Documenta mathematica
%D 2015
%P 491-506
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a28/
%G en
%F DOCMA_2015__20__a28
Malle, Gunter; Navarro, Gabriel; Späth, Britta. Invariant blocks under coprime actions. Documenta mathematica, Tome 20 (2015), pp. 491-506. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a28/