The Eisenstein ideal and Jacquet-Langlands isogeny over function fields
Documenta mathematica, Tome 20 (2015), pp. 551-629.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\fp$ and $\fq$ be two distinct prime ideals of $\{F}_q[T]$. We use the Eisenstein ideal of the Hecke algebra of the Drinfeld modular curve $X_0(\fp\fq)$ to compare the rational torsion subgroup of the Jacobian $J_0(\fp\fq)$ with its subgroup generated by the cuspidal divisors, and to produce explicit examples of Jacquet-Langlands isogenies. Our results are stronger than what is currently known about the analogues of these problems over $\Q$.
Classification : 11G09, 11G18, 11F12
Keywords: Drinfeld modular curves, cuspidal divisor group, Shimura subgroup, Eisenstein ideal, Jacquet-Langlands isogeny
@article{DOCMA_2015__20__a25,
     author = {Papikian, Mihran and Wei, Fu-Tsun},
     title = {The {Eisenstein} ideal and {Jacquet-Langlands} isogeny over function fields},
     journal = {Documenta mathematica},
     pages = {551--629},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a25/}
}
TY  - JOUR
AU  - Papikian, Mihran
AU  - Wei, Fu-Tsun
TI  - The Eisenstein ideal and Jacquet-Langlands isogeny over function fields
JO  - Documenta mathematica
PY  - 2015
SP  - 551
EP  - 629
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a25/
LA  - en
ID  - DOCMA_2015__20__a25
ER  - 
%0 Journal Article
%A Papikian, Mihran
%A Wei, Fu-Tsun
%T The Eisenstein ideal and Jacquet-Langlands isogeny over function fields
%J Documenta mathematica
%D 2015
%P 551-629
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a25/
%G en
%F DOCMA_2015__20__a25
Papikian, Mihran; Wei, Fu-Tsun. The Eisenstein ideal and Jacquet-Langlands isogeny over function fields. Documenta mathematica, Tome 20 (2015), pp. 551-629. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a25/