Deriving Auslander's formula
Documenta mathematica, Tome 20 (2015), pp. 669-688.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Auslander's formula shows that any abelian category $\mathsf C$ is equivalent to the category of coherent functors on $\mathsf C$ modulo the Serre subcategory of all effaceable functors. We establish a derived version of this equivalence. This amounts to showing that the homotopy category of injective objects of some appropriate Grothendieck abelian category (the category of ind-objects of $\mathsf C$) is compactly generated and that the full subcategory of compact objects is equivalent to the bounded derived category of $\mathsf C$. The same approach shows for an arbitrary Grothendieck abelian category that its derived category and the homotopy category of injective objects are well-generated triangulated categories. For sufficiently large cardinals $\alpha$ we identify their $\alpha$-compact objects and compare them.
Classification : 18E30, 16E35, 18C35, 18E15
@article{DOCMA_2015__20__a23,
     author = {Krause, Henning},
     title = {Deriving {Auslander's} formula},
     journal = {Documenta mathematica},
     pages = {669--688},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a23/}
}
TY  - JOUR
AU  - Krause, Henning
TI  - Deriving Auslander's formula
JO  - Documenta mathematica
PY  - 2015
SP  - 669
EP  - 688
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a23/
LA  - en
ID  - DOCMA_2015__20__a23
ER  - 
%0 Journal Article
%A Krause, Henning
%T Deriving Auslander's formula
%J Documenta mathematica
%D 2015
%P 669-688
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a23/
%G en
%F DOCMA_2015__20__a23
Krause, Henning. Deriving Auslander's formula. Documenta mathematica, Tome 20 (2015), pp. 669-688. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a23/