Multiplicative structures on algebraic $K$-theory
Documenta mathematica, Tome 20 (2015), pp. 859-878.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The algebraic $K$-theory of Waldhausen $\infty$-categories is the functor corepresented by the unit object for a natural symmetric monoidal structure. We therefore regard it as the stable homotopy theory of homotopy theories. In particular, it respects all algebraic structures, and as a result, we obtain the Deligne Conjecture for this form of $K$-theory.
Classification : 19D10, 19D55
Keywords: algebraic K-theory, waldhausen infty-categories, multiplicative structures, Deligne conjecture
@article{DOCMA_2015__20__a17,
     author = {Barwick, Clark},
     title = {Multiplicative structures on algebraic $K$-theory},
     journal = {Documenta mathematica},
     pages = {859--878},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a17/}
}
TY  - JOUR
AU  - Barwick, Clark
TI  - Multiplicative structures on algebraic $K$-theory
JO  - Documenta mathematica
PY  - 2015
SP  - 859
EP  - 878
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a17/
LA  - en
ID  - DOCMA_2015__20__a17
ER  - 
%0 Journal Article
%A Barwick, Clark
%T Multiplicative structures on algebraic $K$-theory
%J Documenta mathematica
%D 2015
%P 859-878
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a17/
%G en
%F DOCMA_2015__20__a17
Barwick, Clark. Multiplicative structures on algebraic $K$-theory. Documenta mathematica, Tome 20 (2015), pp. 859-878. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a17/