A combinatorial interpretation for Schreyer's tetragonal invariants
Documenta mathematica, Tome 20 (2015), pp. 927-942.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: $\noindent $Schreyer has proved that the graded Betti numbers of a canonical tetragonal curve are determined by two integers $b_1$ and $b_2$, associated to the curve through a certain geometric construction. In this article we prove that in the case of a smooth projective tetragonal curve on a toric surface, these integers have easy interpretations in terms of the Newton polygon of its defining Laurent polynomial. We can use this to prove an intrinsicness result on Newton polygons of small lattice width.noindent emphMSC2010: Primary 14H45, Secondary 14M25
Classification : 14H45, 14M25
@article{DOCMA_2015__20__a15,
     author = {Castryck, Wouter and Cools, Filip},
     title = {A combinatorial interpretation for {Schreyer's} tetragonal invariants},
     journal = {Documenta mathematica},
     pages = {927--942},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a15/}
}
TY  - JOUR
AU  - Castryck, Wouter
AU  - Cools, Filip
TI  - A combinatorial interpretation for Schreyer's tetragonal invariants
JO  - Documenta mathematica
PY  - 2015
SP  - 927
EP  - 942
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a15/
LA  - en
ID  - DOCMA_2015__20__a15
ER  - 
%0 Journal Article
%A Castryck, Wouter
%A Cools, Filip
%T A combinatorial interpretation for Schreyer's tetragonal invariants
%J Documenta mathematica
%D 2015
%P 927-942
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a15/
%G en
%F DOCMA_2015__20__a15
Castryck, Wouter; Cools, Filip. A combinatorial interpretation for Schreyer's tetragonal invariants. Documenta mathematica, Tome 20 (2015), pp. 927-942. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a15/