Linear Koszul duality and Fourier transform for convolution algebras
Documenta mathematica, Tome 20 (2015), pp. 989-1038.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we prove that the linear Koszul duality isomorphism for convolution algebras in $K$-homology of citeMR3 and the Fourier transform isomorphism for convolution algebras in Borel--Moore homology of citeEM are related by the Chern character. So, Koszul duality appears as a categorical upgrade of Fourier transform of constructible sheaves. This result explains the connection between the categorification of the Iwahori--Matsumoto involution for graded affine Hecke algebras in citeEM and for ordinary affine Hecke algebras in citeMR3.
Classification : 18E30, 16E45, 16S37
Keywords: Koszul duality, Fourier transform, affine Hecke algebras
@article{DOCMA_2015__20__a13,
     author = {Mirkovi\'c, Ivan and Riche, Simon},
     title = {Linear {Koszul} duality and {Fourier} transform for convolution algebras},
     journal = {Documenta mathematica},
     pages = {989--1038},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a13/}
}
TY  - JOUR
AU  - Mirković, Ivan
AU  - Riche, Simon
TI  - Linear Koszul duality and Fourier transform for convolution algebras
JO  - Documenta mathematica
PY  - 2015
SP  - 989
EP  - 1038
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a13/
LA  - en
ID  - DOCMA_2015__20__a13
ER  - 
%0 Journal Article
%A Mirković, Ivan
%A Riche, Simon
%T Linear Koszul duality and Fourier transform for convolution algebras
%J Documenta mathematica
%D 2015
%P 989-1038
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a13/
%G en
%F DOCMA_2015__20__a13
Mirković, Ivan; Riche, Simon. Linear Koszul duality and Fourier transform for convolution algebras. Documenta mathematica, Tome 20 (2015), pp. 989-1038. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a13/