Moduli spaces for quilted surfaces and Poisson structures
Documenta mathematica, Tome 20 (2015), pp. 1071-1135.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a Lie group endowed with a bi-invariant pseudo-Riemannian metric. Then the moduli space of flat connections on a principal $G$-bundle, $P\to \Sigma$, over a compact oriented surface with boundary, $\Sigma$, carries a Poisson structure. If we trivialize $P$ over a finite number of points on $\partial \Sigma$ then the moduli space carries a quasi-Poisson structure instead. Our first result is to describe this quasi-Poisson structure in terms of an intersection form on the fundamental groupoid of the surface, generalizing results of Massuyeau and Turaev citeMassuyeau:2012uw,Turaev:2007jh. Our second result is to extend this framework to quilted surfaces, i.e. surfaces where the structure group varies from region to region and a reduction (or relation) of structure occurs along the borders of the regions, extending results of the second author citeSevera:2011ug,Severa98,Severa:2005vla. We describe the Poisson structure on the moduli space for a quilted surface in terms of an operation on spin networks, i.e. graphs immersed in the surface which are endowed with some additional data on their edges and vertices. This extends the results of various authors citeGoldman:1986eh,Goldman:1984hr,Roche:2000ws,Andersen:1996ur.
Classification : 53D30, 53D17
Keywords: moduli spaces, flat connections, flat bundles, Chern Simons, topological defects, Poisson geometry, symplectic geometry, spin networks, representation theory, Lie group, Lie algebra, Atiyah Bott, quasi-Poisson geometry, quasi-Poisson reduction, Poisson Lie groups, Poisson homogeneous spaces
@article{DOCMA_2015__20__a10,
     author = {Li-Bland, David and \v{S}evera, Pavol},
     title = {Moduli spaces for quilted surfaces and {Poisson} structures},
     journal = {Documenta mathematica},
     pages = {1071--1135},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a10/}
}
TY  - JOUR
AU  - Li-Bland, David
AU  - Ševera, Pavol
TI  - Moduli spaces for quilted surfaces and Poisson structures
JO  - Documenta mathematica
PY  - 2015
SP  - 1071
EP  - 1135
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a10/
LA  - en
ID  - DOCMA_2015__20__a10
ER  - 
%0 Journal Article
%A Li-Bland, David
%A Ševera, Pavol
%T Moduli spaces for quilted surfaces and Poisson structures
%J Documenta mathematica
%D 2015
%P 1071-1135
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a10/
%G en
%F DOCMA_2015__20__a10
Li-Bland, David; Ševera, Pavol. Moduli spaces for quilted surfaces and Poisson structures. Documenta mathematica, Tome 20 (2015), pp. 1071-1135. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a10/