Triple Massey products over global fields
Documenta mathematica, Tome 20 (2015), pp. 1467-1480.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $K$ be a global field which contains a primitive $p$-th root of unity, where $p$ is a prime number. M. J. Hopkins and K. G. Wickelgren showed that for $p=2$, any triple Massey product over $K$ with respect to $\F$_p, contains 0 whenever it is defined. We show that this is true for all primes $p$.
Classification : 12G05, 55S30
Keywords: Massey products, Galois cohomology, local fields, global fields
@article{DOCMA_2015__20__a1,
     author = {Min\'ac, J\'an and T\^an, Nguy\^en Duy},
     title = {Triple {Massey} products over global fields},
     journal = {Documenta mathematica},
     pages = {1467--1480},
     publisher = {mathdoc},
     volume = {20},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a1/}
}
TY  - JOUR
AU  - Minác, Ján
AU  - Tân, Nguyên Duy
TI  - Triple Massey products over global fields
JO  - Documenta mathematica
PY  - 2015
SP  - 1467
EP  - 1480
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a1/
LA  - en
ID  - DOCMA_2015__20__a1
ER  - 
%0 Journal Article
%A Minác, Ján
%A Tân, Nguyên Duy
%T Triple Massey products over global fields
%J Documenta mathematica
%D 2015
%P 1467-1480
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a1/
%G en
%F DOCMA_2015__20__a1
Minác, Ján; Tân, Nguyên Duy. Triple Massey products over global fields. Documenta mathematica, Tome 20 (2015), pp. 1467-1480. http://geodesic.mathdoc.fr/item/DOCMA_2015__20__a1/