Categorical duality for Yetter-Drinfeld algebras
Documenta mathematica, Tome 19 (2014), pp. 1105-1139.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study tensor structures on $(\Rep G)$-module categories defined by actions of a compact quantum group $G$ on unital C^*-algebras. We show that having a tensor product which defines the module structure is equivalent to enriching the action of $G$ to the structure of a braided-commutative Yetter--Drinfeld algebra. This shows that the category of braided-commutative Yetter--Drinfeld $G$-C^*-algebras is equivalent to the category of generating unitary tensor functors from $\Rep G$ into C^*-tensor categories. To illustrate this equivalence, we discuss coideals of quotient type in $C(G)$, Hopf--Galois extensions and noncommutative Poisson boundaries.
Classification : 20G42, 18D10, 46L53, 57T05
Keywords: C^*-tensor category, quantum group, Yetter--Drinfeld algebra, Poisson boundary
@article{DOCMA_2014__19__a7,
     author = {Neshveyev, Sergey and Yamashita, Makoto},
     title = {Categorical duality for {Yetter-Drinfeld} algebras},
     journal = {Documenta mathematica},
     pages = {1105--1139},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a7/}
}
TY  - JOUR
AU  - Neshveyev, Sergey
AU  - Yamashita, Makoto
TI  - Categorical duality for Yetter-Drinfeld algebras
JO  - Documenta mathematica
PY  - 2014
SP  - 1105
EP  - 1139
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a7/
LA  - en
ID  - DOCMA_2014__19__a7
ER  - 
%0 Journal Article
%A Neshveyev, Sergey
%A Yamashita, Makoto
%T Categorical duality for Yetter-Drinfeld algebras
%J Documenta mathematica
%D 2014
%P 1105-1139
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a7/
%G en
%F DOCMA_2014__19__a7
Neshveyev, Sergey; Yamashita, Makoto. Categorical duality for Yetter-Drinfeld algebras. Documenta mathematica, Tome 19 (2014), pp. 1105-1139. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a7/