The perturbed Maxwell operator as pseudodifferential operator
Documenta mathematica, Tome 19 (2014), pp. 63-101.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: As a first step to deriving effective dynamics and ray optics, we prove that the perturbed periodic Maxwell operator in $d = 3$ can be seen as a pseudo­differential operator. This necessitates a better understanding of the periodic Maxwell operator $\Mper$. In particular, we characterize the behavior of $\Mper$ and the physical initial states at small crystal momenta $k$ and small frequencies. Among other things, we prove that generically the band spectrum is symmetric with respect to inversions at $k = 0$ and that there are exactly 4 ground state bands with approximately linear dispersion near $k = 0$.
Classification : 35S05, 35P99, 35Q60, 35Q61, 78A48
Keywords: Maxwell equations, Maxwell operator, Bloch-Floquet theory, pseudodifferential operators
@article{DOCMA_2014__19__a43,
     author = {De Nittis, Giuseppe and Lein, Max},
     title = {The perturbed {Maxwell} operator as pseudodifferential operator},
     journal = {Documenta mathematica},
     pages = {63--101},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a43/}
}
TY  - JOUR
AU  - De Nittis, Giuseppe
AU  - Lein, Max
TI  - The perturbed Maxwell operator as pseudodifferential operator
JO  - Documenta mathematica
PY  - 2014
SP  - 63
EP  - 101
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a43/
LA  - en
ID  - DOCMA_2014__19__a43
ER  - 
%0 Journal Article
%A De Nittis, Giuseppe
%A Lein, Max
%T The perturbed Maxwell operator as pseudodifferential operator
%J Documenta mathematica
%D 2014
%P 63-101
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a43/
%G en
%F DOCMA_2014__19__a43
De Nittis, Giuseppe; Lein, Max. The perturbed Maxwell operator as pseudodifferential operator. Documenta mathematica, Tome 19 (2014), pp. 63-101. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a43/