$E_n$-regularity implies $E_{n-1}$-regularity
Documenta mathematica, Tome 19 (2014), pp. 121-139.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Vorst and Dayton-Weibel proved that $K_n$-regularity implies $K_{n-1}$-regularity. In this article we generalize this result from (commutative) rings to differential graded categories and from algebraic $K$-theory to any functor which is Morita invariant, continuous, and localizing. Moreover, we show that regularity is preserved under taking desuspensions, fibers of morphisms, direct factors, and arbitrary direct sums. As an application, we prove that the above implication also holds for schemes. Along the way, we extend Bass' fundamental theorem to this broader setting and establish a Nisnevich descent result which is of independent interest.
Classification : 14A15, 16D90, 18D20, 18E30
Keywords: algebraic K-theory, localizing invariants, regularity, dg categories
@article{DOCMA_2014__19__a41,
     author = {Tabuada, Gon\c{c}alo},
     title = {$E_n$-regularity implies $E_{n-1}$-regularity},
     journal = {Documenta mathematica},
     pages = {121--139},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a41/}
}
TY  - JOUR
AU  - Tabuada, Gonçalo
TI  - $E_n$-regularity implies $E_{n-1}$-regularity
JO  - Documenta mathematica
PY  - 2014
SP  - 121
EP  - 139
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a41/
LA  - en
ID  - DOCMA_2014__19__a41
ER  - 
%0 Journal Article
%A Tabuada, Gonçalo
%T $E_n$-regularity implies $E_{n-1}$-regularity
%J Documenta mathematica
%D 2014
%P 121-139
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a41/
%G en
%F DOCMA_2014__19__a41
Tabuada, Gonçalo. $E_n$-regularity implies $E_{n-1}$-regularity. Documenta mathematica, Tome 19 (2014), pp. 121-139. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a41/