An equivariant Lefschetz fixed-point formula for correspondences
Documenta mathematica, Tome 19 (2014), pp. 141-193.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We compute the trace of an endomorphism in equivariant bivariant K-theory for a compact group (G) in several ways: geometrically using geometric correspondences, algebraically using localisation, and as a Hattori--Stallings trace. This results in an equivariant version of the classical Lefschetz fixed-point theorem, which applies to arbitrary equivariant correspondences, not just maps. textitWe dedicate this article to Tamaz Kandelaki, who was a coauthor in an earlier version of this article, and passed away in 2012. We will remember him for his warm character and his perseverance in doing mathematics in difficult circumstances.
Classification : 19K99, 19K35, 19D55
@article{DOCMA_2014__19__a40,
     author = {Dell'Ambrogio, Ivo and Emerson, Heath and Meyer, Ralf},
     title = {An equivariant {Lefschetz} fixed-point formula for correspondences},
     journal = {Documenta mathematica},
     pages = {141--193},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a40/}
}
TY  - JOUR
AU  - Dell'Ambrogio, Ivo
AU  - Emerson, Heath
AU  - Meyer, Ralf
TI  - An equivariant Lefschetz fixed-point formula for correspondences
JO  - Documenta mathematica
PY  - 2014
SP  - 141
EP  - 193
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a40/
LA  - en
ID  - DOCMA_2014__19__a40
ER  - 
%0 Journal Article
%A Dell'Ambrogio, Ivo
%A Emerson, Heath
%A Meyer, Ralf
%T An equivariant Lefschetz fixed-point formula for correspondences
%J Documenta mathematica
%D 2014
%P 141-193
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a40/
%G en
%F DOCMA_2014__19__a40
Dell'Ambrogio, Ivo; Emerson, Heath; Meyer, Ralf. An equivariant Lefschetz fixed-point formula for correspondences. Documenta mathematica, Tome 19 (2014), pp. 141-193. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a40/