On the integrality of modular symbols and Kato's Euler system for elliptic curves
Documenta mathematica, Tome 19 (2014), pp. 381-402.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $E/\QQ$ be an elliptic curve. We investigate the denominator of the modular symbols attached to $E$. We show that one can change the curve in its isogeny class to make these denominators coprime to any given odd prime of semi-stable reduction. This has applications to the integrality of Kato's Euler system and the main conjecture in Iwasawa theory for elliptic curves.
Classification : 11G05, 11F67, 11G40, 11R23, 11G16
Keywords: elliptic curves, modular symbols, Kato's Euler system
@article{DOCMA_2014__19__a33,
     author = {Wuthrich, Christian},
     title = {On the integrality of modular symbols and {Kato's} {Euler} system for elliptic curves},
     journal = {Documenta mathematica},
     pages = {381--402},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a33/}
}
TY  - JOUR
AU  - Wuthrich, Christian
TI  - On the integrality of modular symbols and Kato's Euler system for elliptic curves
JO  - Documenta mathematica
PY  - 2014
SP  - 381
EP  - 402
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a33/
LA  - en
ID  - DOCMA_2014__19__a33
ER  - 
%0 Journal Article
%A Wuthrich, Christian
%T On the integrality of modular symbols and Kato's Euler system for elliptic curves
%J Documenta mathematica
%D 2014
%P 381-402
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a33/
%G en
%F DOCMA_2014__19__a33
Wuthrich, Christian. On the integrality of modular symbols and Kato's Euler system for elliptic curves. Documenta mathematica, Tome 19 (2014), pp. 381-402. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a33/