Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras
Documenta mathematica, Tome 19 (2014), pp. 403-438.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Bijective correspondences are established between (1) silting objects, (2) simple-minded collections, (3) bounded $t$-structures with length heart and (4) bounded co-$t$-structures. These correspondences are shown to commute with mutations and partial orders. The results are valid for finite-dimensional algebras. A concrete example is given to illustrate how these correspondences help to compute the space of Bridgeland's stability conditions.
Classification : 16E35, 16E45, 18E30
Keywords: silting object, simple-minded collection, t-structure, co-t-structure, mutation
@article{DOCMA_2014__19__a32,
     author = {Koenig, Steffen and Yang, Dong},
     title = {Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras},
     journal = {Documenta mathematica},
     pages = {403--438},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a32/}
}
TY  - JOUR
AU  - Koenig, Steffen
AU  - Yang, Dong
TI  - Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras
JO  - Documenta mathematica
PY  - 2014
SP  - 403
EP  - 438
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a32/
LA  - en
ID  - DOCMA_2014__19__a32
ER  - 
%0 Journal Article
%A Koenig, Steffen
%A Yang, Dong
%T Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras
%J Documenta mathematica
%D 2014
%P 403-438
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a32/
%G en
%F DOCMA_2014__19__a32
Koenig, Steffen; Yang, Dong. Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras. Documenta mathematica, Tome 19 (2014), pp. 403-438. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a32/