Trace class operators, regulators, and assembly maps in $K$-theory
Documenta mathematica, Tome 19 (2014), pp. 439-455.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a group and let $KH$ be homotopy algebraic $K$-theory. We prove that if $G$ satisfies the rational $KH$ isomorphism conjecture for the group algebra $L^1[G]$ with coefficients in the algebra of trace-class operators in Hilbert space, then it also satisfies the $K$-theoretic Novikov conjecture for the group algebra over the integers, and the rational injectivity part of the Farrell-Jones conjecture with coefficients in any number field.
Classification : 19D55, 19F27, 19K99
Keywords: Borel regulator, homotopy algebraic K-theory, multiplicative K-theory, trace-class operators
@article{DOCMA_2014__19__a31,
     author = {Corti\~nas, Guillermo and Tartaglia, Gisela},
     title = {Trace class operators, regulators, and assembly maps in $K$-theory},
     journal = {Documenta mathematica},
     pages = {439--455},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a31/}
}
TY  - JOUR
AU  - Cortiñas, Guillermo
AU  - Tartaglia, Gisela
TI  - Trace class operators, regulators, and assembly maps in $K$-theory
JO  - Documenta mathematica
PY  - 2014
SP  - 439
EP  - 455
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a31/
LA  - en
ID  - DOCMA_2014__19__a31
ER  - 
%0 Journal Article
%A Cortiñas, Guillermo
%A Tartaglia, Gisela
%T Trace class operators, regulators, and assembly maps in $K$-theory
%J Documenta mathematica
%D 2014
%P 439-455
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a31/
%G en
%F DOCMA_2014__19__a31
Cortiñas, Guillermo; Tartaglia, Gisela. Trace class operators, regulators, and assembly maps in $K$-theory. Documenta mathematica, Tome 19 (2014), pp. 439-455. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a31/