Semistable modules over Lie algebroids in positive characteristic
Documenta mathematica, Tome 19 (2014), pp. 509-540.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study Lie algebroids in positive characteristic and moduli spaces of their modules. In particular, we show a Langton's type theorem for the corresponding moduli spaces. We relate Langton's construction to Simpson's construction of gr-semistable Griffiths transverse filtration. We use it to prove a recent conjecture of Lan-Sheng-Zuo that semistable systems of Hodge sheaves on liftable varieties in positive characteristic are strongly semistable.
Classification : 14D20, 14G17, 17B99
Keywords: Lie algebroids, langton's theorem, sheaves with connection, Higgs sheaves, positive characteristic
@article{DOCMA_2014__19__a29,
     author = {Langer, Adrian},
     title = {Semistable modules over {Lie} algebroids in positive characteristic},
     journal = {Documenta mathematica},
     pages = {509--540},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a29/}
}
TY  - JOUR
AU  - Langer, Adrian
TI  - Semistable modules over Lie algebroids in positive characteristic
JO  - Documenta mathematica
PY  - 2014
SP  - 509
EP  - 540
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a29/
LA  - en
ID  - DOCMA_2014__19__a29
ER  - 
%0 Journal Article
%A Langer, Adrian
%T Semistable modules over Lie algebroids in positive characteristic
%J Documenta mathematica
%D 2014
%P 509-540
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a29/
%G en
%F DOCMA_2014__19__a29
Langer, Adrian. Semistable modules over Lie algebroids in positive characteristic. Documenta mathematica, Tome 19 (2014), pp. 509-540. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a29/