A conductor formula for completed group algebras.
Documenta mathematica, Tome 19 (2014), pp. 601-627.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\fo$ be the ring of integers in a finite extension of $\qp$. If $G$ is a finite group and $\Ga$ is a maximal $\fo$-order containing the group ring $\fo[G]$, Jacobinski's conductor formula gives a complete description of the central conductor of $\Ga$ into $\fo[G]$ in terms of characters of $G$. We prove a similar result for completed group algebras $\fo [[G]]$, where $G$ is a $p$-adic Lie group of dimension 1. We will also discuss several consequences of this result.
Classification : 16H10, 16H20, 11R23
Keywords: central conductor, completed group algebras, extensions of lattices, Fitting invariants
@article{DOCMA_2014__19__a26,
     author = {Nickel, Andreas},
     title = {A conductor formula for completed group algebras.},
     journal = {Documenta mathematica},
     pages = {601--627},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a26/}
}
TY  - JOUR
AU  - Nickel, Andreas
TI  - A conductor formula for completed group algebras.
JO  - Documenta mathematica
PY  - 2014
SP  - 601
EP  - 627
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a26/
LA  - en
ID  - DOCMA_2014__19__a26
ER  - 
%0 Journal Article
%A Nickel, Andreas
%T A conductor formula for completed group algebras.
%J Documenta mathematica
%D 2014
%P 601-627
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a26/
%G en
%F DOCMA_2014__19__a26
Nickel, Andreas. A conductor formula for completed group algebras.. Documenta mathematica, Tome 19 (2014), pp. 601-627. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a26/