Torsion in the crystalline cohomology of singular varieties
Documenta mathematica, Tome 19 (2014), pp. 673-687.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper discusses some examples showing that the crystalline cohomology of even very mildly singular projective varieties tends to be quite large. In particular, any singular projective variety with at worst ordinary double points has infinitely generated crystalline cohomology in at least two cohomological degrees. These calculations rely critically on comparisons between crystalline and derived de Rham cohomology.
Classification : 14F30, 14F40
Keywords: crystalline cohomology, derived de Rham cohomology, cartier isomorphism, Frobenius lifts
@article{DOCMA_2014__19__a23,
     author = {Bhatt, Bhargav},
     title = {Torsion in the crystalline cohomology of singular varieties},
     journal = {Documenta mathematica},
     pages = {673--687},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a23/}
}
TY  - JOUR
AU  - Bhatt, Bhargav
TI  - Torsion in the crystalline cohomology of singular varieties
JO  - Documenta mathematica
PY  - 2014
SP  - 673
EP  - 687
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a23/
LA  - en
ID  - DOCMA_2014__19__a23
ER  - 
%0 Journal Article
%A Bhatt, Bhargav
%T Torsion in the crystalline cohomology of singular varieties
%J Documenta mathematica
%D 2014
%P 673-687
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a23/
%G en
%F DOCMA_2014__19__a23
Bhatt, Bhargav. Torsion in the crystalline cohomology of singular varieties. Documenta mathematica, Tome 19 (2014), pp. 673-687. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a23/