On the structure of Witt-Burnside rings attached to pro-$p$ groups
Documenta mathematica, Tome 19 (2014), pp. 1291-1316.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The $p$-typical Witt vectors are a ubiquitous object in algebra and number theory. They arise as a functorial construction that takes perfect fields $k$ of prime characteristic $p > 0$ to $p$-adically complete discrete valuation rings of characteristic 0 with residue field $k$ and are universal in that sense. A. Dress and C. Siebeneicher generalized this construction by producing a functor $\W_G$ attached to any profinite group $G$. The $p$-typical Witt vectors arise as those attached to the $p$-adic integers. Here we examine the ring structure of $\W_G(k)$ for several examples of pro-$p$ groups $G$ and fields $k$ of characteristic $p$. We will show that the structure is surprisingly more complicated than the $p$-typical case.
@article{DOCMA_2014__19__a2,
     author = {Miller, Lance Edward},
     title = {On the structure of {Witt-Burnside} rings attached to pro-$p$ groups},
     journal = {Documenta mathematica},
     pages = {1291--1316},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a2/}
}
TY  - JOUR
AU  - Miller, Lance Edward
TI  - On the structure of Witt-Burnside rings attached to pro-$p$ groups
JO  - Documenta mathematica
PY  - 2014
SP  - 1291
EP  - 1316
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a2/
LA  - en
ID  - DOCMA_2014__19__a2
ER  - 
%0 Journal Article
%A Miller, Lance Edward
%T On the structure of Witt-Burnside rings attached to pro-$p$ groups
%J Documenta mathematica
%D 2014
%P 1291-1316
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a2/
%G en
%F DOCMA_2014__19__a2
Miller, Lance Edward. On the structure of Witt-Burnside rings attached to pro-$p$ groups. Documenta mathematica, Tome 19 (2014), pp. 1291-1316. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a2/