Fano threefolds with 2-torus action
Documenta mathematica, Tome 19 (2014), pp. 905-940.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Following the work of Altmann and Hausen we give a combinatorial description for smooth Fano threefolds admitting a 2-torus action. We show that a whole variety of properties and invariants can be read off from this description. As an application we prove and disprove the existence of Kähler-Einstein metrics for some of these Fano threefolds, calculate their Cox rings and some of their toric canonical degenerations.
Classification : 14L30, 14J45, 32Q20
Keywords: torus action, moment polytope, Fano variety, Kähler-Einstein metric, Cox ring
@article{DOCMA_2014__19__a15,
     author = {S\"u{\ss}, Hendrik},
     title = {Fano threefolds with 2-torus action},
     journal = {Documenta mathematica},
     pages = {905--940},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a15/}
}
TY  - JOUR
AU  - Süß, Hendrik
TI  - Fano threefolds with 2-torus action
JO  - Documenta mathematica
PY  - 2014
SP  - 905
EP  - 940
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a15/
LA  - en
ID  - DOCMA_2014__19__a15
ER  - 
%0 Journal Article
%A Süß, Hendrik
%T Fano threefolds with 2-torus action
%J Documenta mathematica
%D 2014
%P 905-940
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a15/
%G en
%F DOCMA_2014__19__a15
Süß, Hendrik. Fano threefolds with 2-torus action. Documenta mathematica, Tome 19 (2014), pp. 905-940. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a15/