Formality of derived intersections
Documenta mathematica, Tome 19 (2014), pp. 1003-1016.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study derived intersections of smooth analytic cycles, and provide in some cases necessary and sufficient conditions for this intersection be formal. In particular, if $X$ is a complex submanifold of a complex manifold $Y$, we prove that $X$ can be quantized if and only if the derived intersection of $X^2$ and $\Delta_Y$ is formal in $\mathrm{D}^{\mathrm{b}}\bigl (X^2 \bigr)$.
Classification : 14C17, 14F05
Keywords: intersection theory, derived categories, quantized analytic cycles
@article{DOCMA_2014__19__a12,
     author = {Grivaux, Julien},
     title = {Formality of derived intersections},
     journal = {Documenta mathematica},
     pages = {1003--1016},
     publisher = {mathdoc},
     volume = {19},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a12/}
}
TY  - JOUR
AU  - Grivaux, Julien
TI  - Formality of derived intersections
JO  - Documenta mathematica
PY  - 2014
SP  - 1003
EP  - 1016
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a12/
LA  - en
ID  - DOCMA_2014__19__a12
ER  - 
%0 Journal Article
%A Grivaux, Julien
%T Formality of derived intersections
%J Documenta mathematica
%D 2014
%P 1003-1016
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a12/
%G en
%F DOCMA_2014__19__a12
Grivaux, Julien. Formality of derived intersections. Documenta mathematica, Tome 19 (2014), pp. 1003-1016. http://geodesic.mathdoc.fr/item/DOCMA_2014__19__a12/